Geometric linear normality for nodal curves on some projective surfaces
نویسنده
چکیده
Sunto. – In questo lavoro si generalizzano alcuni risultati di [3] riguardanti la proprieta’ di alcune curve nodali, su superficie non-singolari in Pr, di essere ”geometricamente linearmente normali” (concetto che estende la ben nota proprieta’ di essere linearmente normale). Precisamente, per una data curva C, irriducibile e dotata di soli punti nodali come uniche singolarita’, che giace su una superfice S proiettiva, non-singolare e linearmente normale, si determina un limite superiore ”sharp” sul numero dei nodi di C, δ = δ(C, S), di modo che C e’ geometricamente linearmente normale se il numero dei suoi nodi e’ minore di δ. Trattiamo alcuni esempi di superficie che sono elementi di una componente del luogo di Noether-Lefschetz delle superficie in P3 oppure scoppiamenti di alcune superficie proiettive cui il nostro risultato numerico si puo’ applicare facilmente. Infine, per dimostrare che il nostro bound e’ ottimale, nel paragrafo 3 vengono considerati inoltre esempi di superficie ”canoniche” intersezioni complete.
منابع مشابه
00 4 GEOMETRIC k - NORMALITY OF CURVES AND APPLICATIONS
The notion of geometric k-normality for curves is introduced in complete generality and is investigated in the case of nodal and cuspidal curves living on several types of surfaces. We discuss and suggest some applications of this notion to the study of Severi varieties of nodal curves on surfaces of general type and on P 2 .
متن کاملModuli of Nodal Curves on Smooth Surfaces of General Type
In this paper we focus on the problem of computing the number of moduli of the so called Severi varieties (denoted by V|D|,δ), which parametrize universal families of irreducible, δ-nodal curves in a complete linear system |D|, on a smooth projective surface S of general type. We determine geometrical and numerical conditions on D and numerical conditions on δ ensuring that such number coincide...
متن کاملSome Results on Secant Varieties Leading to a Geometric Flip Construction
We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...
متن کاملOn Genera of Smooth Curves in Higher Dimensional Varieties
We prove that for any smooth projective variety X of dimension ≥ 3, there exists an integer g0 = g0(X), such that for any integer g ≥ g0, there exists a smooth curve C in X with g(C) = g. Introduction It’s a very elementary fact that for any integer g ≥ 0, there exists a smooth curve C ⊂ P of genus g. It is interesting to ask what the analogous situation is when projective space is replaced by ...
متن کاملResults on Secant Varieties Leading to a Geometric Flip Construction
We study the relationship between the equations defining a projective variety and properties of its secant varieties. In particular, we use information about the syzygies among the defining equations to derive smoothness and normality statements about SecX and also to obtain information about linear systems on the blow up of projective space along a variety X. We use these results to geometrica...
متن کامل